Skip to main content
Log in

Whittaker modules for \(\widehat{\mathfrak {gl}}\) and \({\mathcal {W}}_{1+ \infty }\)-modules which are not tensor products

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the Whittaker modules \(M_{1}(\varvec{\lambda },\varvec{\mu })\) for the Weyl vertex algebra M (also called \(\beta \gamma \) vertex algebra), constructed in Adamović et al. (J Algebra 539:1–23, 2019), where it was proved that these modules are irreducible for each finite cyclic orbifold \(M^{{\mathbb {Z}}_n}\). In this paper, we consider the modules \(M_{1}(\varvec{\lambda },\varvec{\mu })\) as modules for the \({{\mathbb {Z}}}\)-orbifold of M, denoted by \(M^0\). \(M^0\) is isomorphic to the vertex algebra \({\mathcal {W}}_{1+\infty , c=-1} = {\mathcal {M}}(2) \otimes M_1(1)\) which is the tensor product of the Heisenberg vertex algebra \(M_1(1)\) and the singlet algebra \({\mathcal {M}}(2)\) (cf. Adamović in J Algebra 270:115–132, 2003; Kac and Radul in Transform Groups 1:41–70, 1996; Wang in Commun Math Phys 195:95–111, 1998). Furthermore, these modules are also modules of the Lie algebra \(\widehat{\mathfrak {gl}}\) with central charge \(c=-1\). We prove that they are reducible as \(\widehat{\mathfrak {gl}}\)-modules (and therefore also as \(M^0\)-modules), and we completely describe their irreducible quotients \(L(d,\varvec{\lambda },\varvec{\mu })\). We show that \(L(d,\varvec{\lambda },\varvec{\mu })\) in most cases are not tensor product modules for the vertex algebra \( {\mathcal {M}}(2) \otimes M_1(1)\). Moreover, we show that all constructed modules are typical in the sense that they are irreducible for the Heisenberg–Virasoro vertex subalgebra of \({\mathcal {W}}_{1+\infty , c=-1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adamović, D.: Representations of the vertex algebra \(W_{1+ \infty }\) with a negative integer central charge. Commun. Algebra 29(7), 3153–3166 (2001)

    MATH  Google Scholar 

  2. Adamović, D.: Classification of irreducible modules of certain subalgebras of free boson vertex algebra. J. Algebra 270, 115–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adamović, D., Lu, R., Zhao, K.: Whittaker modules for the affine Lie algebra \(A_{1}^{(1)}\). Adv. Math. 289, 438–479 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adamović, D., Lam, C.H., Pedić, V., Yu, N.: On irreducibility of modules of Whittaker type for cyclic orbifold vertex algebras. J. Algebra 539, 1–23 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Adamović, D., Pedić, V.: On fusion rules and intertwining operators for the Weyl vertex algebra. J. Math. Phys. 60(8), 081701 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Adamović, D., Milas, A.: Logarithmic intertwining operators and \({\cal{W} }(2,2p--1)\)-algebras. J. Math. Phys. 48(7), 073503 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Batra, P., Mazorchuk, V.: Blocks and modules for Whittaker pairs. J. Pure Appl. Algebra 215(7), 1552–1568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borot, G., Bouchard, V., Kumar Chidambaram, N., Creutzig, T.: Whittaker vectors for \({\cal{W}}\)-algebras from topological recursion, arXiv:2104.04516

  9. Creutzig, T., Milas, A.: False theta functions and the Verlinde formula. Adv. Math. 262, 520–545 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Creutzig, T., Linshaw, A.: Trialities of \({\cal{W} }\)-algebras. Camb. J. Math. 10(1), 69–194 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong, C., Lam, C.H., Yamada, H.: W-algebras related to parafermion algebras. J. Algebra 322, 2366–2403 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Frenkel, E., Kac, V., Radul, A., Wang, W.: \({\cal{W} }_{1+ \infty }\) algebra and \({\cal{W} }(gl_N)\) with Central Charge \(N\). Commun. Math. Phys. 170, 337–357 (1995)

    Article  ADS  Google Scholar 

  13. Friedan, D., Martinec, E., Shenker, S.: Conformal invariance, supersymmetry and string theory. Nucl. Phys. B 271, 93–165 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  14. Gaiotto, D.: Asymptotically free N=2 theories and irregular conformal blocks, arXiv:0908.0307

  15. Gould, M.D., Stoilova, N.I.: Casimir invariants and characteristic indentities for \(\mathfrak{gl} (\infty )\). J. Math. Phys. 38, 4783 (1997). https://doi.org/10.1063/1.532123

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kac, V., Radul, A.: Quasi-finite highest weight modules over the Lie algebra of differential operators on the circle. Commun. Math. Phys. 157, 429–457 (1993)

    Article  ADS  MATH  Google Scholar 

  17. Kac, V., Radul, A.: Representation theory of the vertex algebra \(W_{1+\infty }\). Transform. Groups 1(1–2), 41–70 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H.: Twisted modules and pseudo-endomorphisms, Algebra Colloquium, vol. 19(2) (2010)

  19. Ridout, D.: \(sl(2)_{-1/2}\) and the Triplet Model. Nucl. Phys. B 835, 314–342 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Tanabe, K.: Simple weak modules for some subalgebras of the Heisenberg vertex algebra and Whittaker vectors. Algebr. Represent. Theory 23(1), 53–66 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, W.: \(W_{1+\infty }\)-algebra, \(W_3\)-algebra, and Friedan–Martinec–Shenker bosonization. Commun. Math. Phys. 195, 95–111 (1998)

    Article  ADS  MATH  Google Scholar 

  22. Tan, H., Yao, Y., Zhao, K.: Simple restricted modules over the Heisenberg-Virasoro algebra as VOA modules, arXiv:2110.05714v2 [math.RT]

Download references

Acknowledgements

We would like to thank C. H. Lam, N. Yu, A. Romanov and K. Zhao for discussions about Whittaker modules. We would also like to thank the referees for their valuable comments.

The authors are partially supported by the QuantiXLie Centre of Excellence, a project cofinanced by the Croatian Government, and European Union through the European Regional Development Fund—the Competitiveness and Cohesion Operational Programme (KK.01.1.1.01.0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronika Pedić Tomić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: \(M_1(\varvec{\lambda }, \varvec{\mu })\) as a module for the Heisenberg–Virasoro algebra

Appendix A: \(M_1(\varvec{\lambda }, \varvec{\mu })\) as a module for the Heisenberg–Virasoro algebra

In this section, we prove a stronger statement that \(M_1(\varvec{\lambda }, \varvec{\mu })\) is a cyclic module for the Heisenberg–Virasoro vertex subalgebra of \({\mathcal {W}}_{1+\infty ,-1}\). Our main argument will be that the action of singlet \({\mathcal {M}}(2)\) on the Whittaker vector \( \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\) can be replaced by the action of the Virasoro subalgebra of \({\mathcal {M}}(2)\). Next we identify \(M_1(\varvec{\lambda }, \varvec{\mu })\) and \(L(d,\varvec{\lambda }, \varvec{\mu }) \) as restricted modules for the Heisenberg–Virasoro algebra recently classified in [22].

Recall that

$$\begin{aligned} J^k(z) =Y(a^*(-k) a, z) = \sum _{ s \in {{\mathbb {Z}}} } J^k(s) z^{-k-s-1}. \end{aligned}$$

The singlet algebra \({\mathcal {M}}(2)\) (cf. [2, 21]) is generated by the Virasoro vector \(L = J^1 + \tfrac{1}{2}:(J^0)^2: + \tfrac{1}{2} D J^0\) and by the primary field H of conformal weight 3. Recall that the \({{\mathbb {Z}}}_2\)–orbifold of M is isomorphic to the simple affine vertex algebra \(L_{-1/2}(\mathfrak {sl}_2)\) generated by

$$\begin{aligned} e = \tfrac{1}{2}: a^2:, h = -J^0, f =-\tfrac{1}{2}:(a^* )^2:, \end{aligned}$$

the singlet algebra is isomorphic to the parafermion vertex algebra \(N_{-1/2}(\mathfrak {sl}_2)\) and H is a scalar multiple of the parafermion generator \(W^3\) in [11, Section 2]:

$$\begin{aligned} W^3= & {} k^2 h(-3)\textbf{1} + 3k h(-2) h(-1)\textbf{1} + 2 h(-1) ^3\textbf{1} - 6 k h(-1) e(-1) f(-1)\textbf{1} \\{} & {} + 3 k^2 e(-2) f(-1) \textbf{1} - 3 k^2 f(-2) e(-1) \textbf{1} \quad (k=-1/2), \end{aligned}$$

(see also [19, Section 4]).

We have that \({\mathcal {L}}^{HVir} _{c=-1} = {\mathcal {L}}^{Vir} _{c=-2} \otimes M_1(1) \), where \({\mathcal {L}}^{Vir} _{c=-2}\) denotes the simple Virasoro vertex algebra of central charge \(c=-2\) generated by L.

Theorem A.1

We have:

  1. (1)

    \(M_1(\varvec{\lambda }, \varvec{\mu })\) is an cyclic \({\mathcal {L}}^{HVir} _{c=-1}\)-module.

  2. (2)

    \(L(d,\varvec{\lambda }, \varvec{\mu }) \) is an irreducible \({\mathcal {L}}^{HVir}_{c=-1}\)-module.

  3. (3)

    \(M_1(\varvec{\lambda }, \varvec{\mu })\) and \(L(d,\varvec{\lambda }, \varvec{\mu }) \) are not tensor product \({\mathcal {L}}^{HVir}_{c=-1}\)-modules. Moreover, there is a nilpotent subalgebra \({\mathcal {P}}\) of \({\mathcal {H}}\) and one-dimensional \({\mathcal {P}}\)-module U such that \(M_1(\varvec{\lambda }, \varvec{\mu }) = \text{ Ind } _{{\mathcal {P}} } ^{{\mathcal {H}}} U\).

Proof

The field H can be expressed using \(J^0, J^1\) and it contains the non-trivial summand \(J^0(-1)^3\textbf{1}\). Set \(H(i):= H_{i+2}\), so we have

$$\begin{aligned} H(z) = Y(H, z) = \sum _{i \in {{\mathbb {Z}}} } H(i) z^{-i-3}. \end{aligned}$$

By a direct calculation, we get for \(s \in {{\mathbb {Z}}}_{\ge 0}\):

$$\begin{aligned} H(3n + 3m+s ) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= \delta _{s,0} q \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\end{aligned}$$

for certain \(q \in {{\mathbb {C}}}\), \( q \ne 0\).

Using the following relation in \({\mathcal {M}}(2)\)

$$\begin{aligned} \frac{3}{4} H(-6)\textbf{1} - L(-2) H(-4)\textbf{1} +\frac{3}{2} L(-3) H =0, \end{aligned}$$

and using the arguments as in [20, Lemma 3.1], we get that

$$\begin{aligned} {\mathcal {M}}(2). \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= \langle L \rangle \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }, \end{aligned}$$

so \({\mathcal {M}}(2). \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\) is isomorphic to the Virasoro submodule obtained by the action of the Virasoro generator L on the Whittaker vector \( \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\). Since by Theorem 5.2\(M_1(\varvec{\lambda }, \varvec{\mu })\) is a cyclic \({\mathcal {M}}(2) \otimes M_1(1)\)-module, we conclude that \(M_1(\varvec{\lambda }, \varvec{\mu })\) is a cyclic \({\mathcal {L}}^{HVir} _{c=-1}\)-module. This proves assertion (1). The assertion (2) is a consequence of (1).

Let us prove assertion (3). For simplicity, we consider the case \(n + 1 \ge m\). Other cases can be treat similarly.

By a direct calculation, we get for \(s \in {{\mathbb {Z}}}_{>0}\):

$$\begin{aligned}{} & {} J^0(n+m +s) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= J^1(n+m +s) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= 0, \end{aligned}$$
(A.1)
$$\begin{aligned}{} & {} J^0( n+m) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= a_{m} \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }, \dots , J^0(n+1) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= a_{1} \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }, \end{aligned}$$
(A.2)
$$\begin{aligned}{} & {} J^1( n+m) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= b_{m+1} \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }, \dots , J^1 (n) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= b_1 \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }, \end{aligned}$$
(A.3)

where \(a_i, b _i \in {{\mathbb {C}}}\), \(a_{m}, b_{ m+1} \ne 0\), and \(J^0(n) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\), \(J^1(n-1) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\) are not proportional to \( \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\).

Consider the nilpotent subalgebra \({\mathcal {P}}^{(n)}\) of \({\mathcal {H}}\) spanned by \(J^0(r+1), J^1(r)\), \(r \ge n\) and \(C_1, C_2\). Then \({{\mathbb {C}}} \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\) is the one-dimensional \({\mathcal {P}}^{(n)} \)-module satisfying relations (A.1)-(A.3) and \(C_1 \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= 2 \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\), \(C_2 \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }= - \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }\). Then \(M_1(\varvec{\lambda }, \varvec{\mu })\) and \(L(d, \varvec{\lambda }, \varvec{\mu })\) are quotients of the universal \({\mathcal {H}}\)-module:

$$\begin{aligned} \text{ Ind } _{{\mathcal {P}}^{(n)} }^{{\mathcal {H}}} {{\mathbb {C}}} \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }. \end{aligned}$$

These universal modules and their simple quotients appeared in a slightly general form in [22, Section 7], where it was proved that they are not tensor product modules (see [22, Example 7.5, Remark A.4]). In particular, it was shown that for each \(d \in {{\mathbb {C}}}\):

$$\begin{aligned} \frac{ \text{ Ind } _{{\mathcal {P}}^{(n)} }^{{\mathcal {H}}} }{U({\mathcal {H}})(J^0(0)-d ) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }} \end{aligned}$$

is a simple, restricted \({\mathcal {H}}\)-module. This easily implies that as \({\mathcal {H}}\)-modules:

$$\begin{aligned} M_1(\varvec{\lambda }, \varvec{\mu }) = \text{ Ind } _{{\mathcal {P}}^{(n)} }^{{\mathcal {H}}} {{\mathbb {C}}} \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }, \quad L(d, \varvec{\lambda }, \varvec{\mu }) = \frac{M_1(\varvec{\lambda }, \varvec{\mu }) }{U({\mathcal {H}})(J^0(0)-d ) \textbf{w}_{ \varvec{ \lambda }, \varvec{ \mu } }}. \end{aligned}$$

The proof follows. \(\square \)

Corollary A.2

\({\mathcal {W}}_{1+\infty , c=-1}\)-modules \({{\widetilde{\rho }}}_s (L(d,\varvec{\lambda }, \varvec{\mu }))\) are typical.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamović, D., Pedić Tomić, V. Whittaker modules for \(\widehat{\mathfrak {gl}}\) and \({\mathcal {W}}_{1+ \infty }\)-modules which are not tensor products. Lett Math Phys 113, 39 (2023). https://doi.org/10.1007/s11005-023-01663-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-023-01663-1

Keywords

Mathematics Subject Classification

Navigation